The Ordered Universe

Chapter 2

Great Idea:

Newton's laws of motion and gravity predict the behavior of objects on Earth and in space

Chapter Outline

-The Night Sky
-The Birth of Modern Astronomy
-The Birth of Mechanics

- Isaac Newton and the Universal Laws of Motion
- Momentum
-The Universal Force of Gravity

The Night Sky

The Night Sky

- Movement of stars, planets, sun -Key for survival of ancestors
- Astronomy
-First science
- Ancient observers:
-Physical events are quantifiable and therefore predictable

Stonehenge

- Started in 2800 B.C.
-Built over long time
-Built by different peoples
- Marks passage of time
-Specifically the seasons
- Still functions today

The Birth of Modern Astronomy

The Historical Background: Ptolemy \& Copernicus

Ptolemy
-2nd century A.D.
-First planetary model

- Earth at center, stationary
- Stars and planets
revolved around earth

Copernicus
-1543: On the
Revolutions of the
Spheres

- Sun at center

Observations: Tycho Brahe \& Johannes Kepler

- Tycho
- Observed new star
- Showed heavens can change
-Designed and used new instruments
- Collected data on planetary movement
- Kepler (Tycho's colleague)
-First Law:
- Planets have elliptical orbits

The Birth of Mechanics

Galileo Galilei

- Mechanics: motions of material objects
- Galileo (1564-1642)
-Mathematics professor
-Inventor

-First to record observations with telescope
- Supported Copernicus' vie

Speed, Velocity, and Acceleration

- Speed-distance traveled over time
- Velocity-speed with direction
- Equation for speed:

- Acceleration-rate of change of velocity
- Equation for velocity:

The Founder of Experimental Science

- Galileo
-Relationship among distance, time, velocity and acceleration
-Found objects accelerate while falling

Galileo's apparatus inclined plane

Time	Distance
0	0
1	1
2	4
3	9
4	16
5	25
6	36

Galileo cont.

- Constant acceleration -Balls on a plane: $v=a t$
- Freefall
-Constant acceleration at g $-g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32$ feet $/ \mathrm{s}^{2}$ -Distance traveled (d)=1/2at ${ }^{2}$

Isaac Newton and the Universal Laws of Motion

The First Law

- An object will continue moving in a straight line at a constant speed, and a stationary object will remain at rest, unless acted upon by an unbalanced force
- Uniform motion vs. acceleration
- Force
- Inertia

The Second Law

-The acceleration produced on a body by a force is proportional to the magnitude of the force and inversely proportional to the mass of the object
-Equation: F=ma

The Third Law

- Interacting object exert equal but opposite forces upon each other
-The reactions may not be equal and opposite

Momentum

Momentum

- Motion depends on mass and speed
- Linear momentum:
- $p=m v$
- Law of conservation of linear momentum
- Angular momentum

The Universal Force of Gravity

The Universal Force of Gravity

- Gravity
- Newton's law of universal gravitation $-\mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{d}^{2}$

The Gravitational Constant, G

- G-constant of direct proportionality -Universal
- Henry Cavendish

$$
\begin{array}{r}
-\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2}-\mathrm{kg} \text { or } \\
6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} /
\end{array}
$$

 kg^{2}

Weight and Gravity

- Weight
-Gravity acting on an object's mass
- Weight depends on gravity
-Different on earth vs. moon
- Mass is constant

Big G and Little g

-Closely related:
-Force $=\left(G \times\right.$ mass $\left.\times M_{E}\right) / R_{E}{ }^{2}$
-Force=mass x g

- Setting equations equal:
-Mass $\times \mathrm{g}=\left(\mathrm{G} \times\right.$ mass $\left.\times \mathrm{M}_{\mathrm{E}}\right) / \mathrm{R}_{\mathrm{E}}{ }^{2}$
-Divide by mass
$-\mathrm{g}=\left(\mathrm{G} \times \mathrm{M}_{\mathrm{E}}\right) / \mathrm{R}_{\mathrm{E}}^{2}$
-Plug in values
$-9.8 \mathrm{~N}-\mathrm{kg}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

