The Ordered Universe

Chapter 2

Great Idea:

Newton's laws of motion and gravity predict the behavior of objects on Earth and in space

Chapter Outline

- The Night Sky
- The Birth of Modern Astronomy
- The Birth of Mechanics
- Isaac Newton and the Universal Laws of Motion
- Momentum
- The Universal Force of Gravity

The Night Sky

- Movement of stars, planets, sun
 - Key for survival of ancestors
- Astronomy
 - -First science
- Ancient observers:
 - -Physical events are quantifiable and therefore predictable

Stonehenge

- Started in 2800 B.C.
 - -Built over long time
 - -Built by different peoples
- Marks passage of time
 - -Specifically the seasons
- Still functions today

The Historical Background: Ptolemy & Copernicus

Ptolemy

- •2nd century A.D.
- First planetary model
- Earth at center, stationary
- Stars and planets
 revolved around earth

Copernicus

- •1543: On the Revolutions of the Spheres
- Sun at center

Observations: Tycho Brahe & Johannes Kepler

- Tycho
 - -Observed new star
 - Showed heavens can change
 - Designed and used new instruments
 - Collected data on planetary movement
- Kepler (Tycho's colleague)
 - -First Law:
 - Planets have elliptical orbits

The Birth of Mechanics

Galileo Galilei

- Mechanics: motions of material objects
- Galileo (1564-1642)
 - -Mathematics professor
 - -Inventor
 - -First to record observations with telescope
 - Supported Copernicus' vie

Speed, Velocity, and Acceleration

- Speed-distance traveled over time
- Velocity-speed with direction
- Equation for speed:

$$v = \frac{d}{t}$$

- Acceleration-rate of change of velocity
- Equation for velocity:

$$\alpha = \frac{(v_f - v_i)}{t}$$

The Founder of Experimental Science

- Galileo
 - Relationship among distance, time, velocity and acceleration
 - -Found objects accelerate while falling

Galileo cont.

- Constant acceleration
 - -Balls on a plane: v=at
- Freefall
 - -Constant acceleration at g
 - $-g = 9.8 \text{m/s}^2 = 32 \text{feet/s}^2$
 - -Distance traveled (d)=1/2at2

Isaac Newton and the Universal Laws of Motion

The First Law

- An object will continue moving in a straight line at a constant speed, and a stationary object will remain at rest, unless acted upon by an unbalanced force
- Uniform motion vs. acceleration
- Force
- Inertia

The Second Law

- The acceleration produced on a body by a force is proportional to the magnitude of the force and inversely proportional to the mass of the object
- Equation: F=ma

The Third Law

 Interacting object exert equal but opposite forces upon each other

The reactions may not be equal and

opposite

Momentum

- Motion depends on mass and speed
- Linear momentum:
 - -p=mv
- Law of conservation of linear momentum
- Angular momentum

The Universal Force of Gravity

The Universal Force of Gravity

- Gravity
- Newton's law of universal gravitation

 $-F=Gm_1m_2/d^2$

The Gravitational Constant, G

- G-constant of direct proportionality
 - -Universal
- Henry Cavendish

-G=6.67 x 10⁻¹¹m³/s²-kg or 6.67 x 10⁻¹¹N-m²/ kg²

Weight and Gravity

- Weight
 - -Gravity acting on an object's mass
- Weight depends on gravity
 - -Different on earth vs. moon
- Mass is constant

Big G and Little g

- Closely related:
 - -Force=(G x mass x M_E)/ R_E^2
 - -Force=mass x g
- Setting equations equal:
 - -Mass x $g=(G x mass x M_E)/R_E^2$
 - Divide by mass
 - $-g = (G \times M_E)/R_E^2$
 - Plug in values
 - $-9.8 \text{ N-kg} = 9.8 \text{m/s}^2$

